
Exoplanets

Transit photometry is by far the most successful method for detecting
exoplanets, planets outside our solar system. Basically, if the exoplanet
gets between its star and us, that star will dim slightly.

We can predict the amount of dimming with simple geometry. From
such a far distance, the star and exoplanet will appear as circles with
relative radii equal to their true relative radii (there are no
perspective effects). If we assume that all parts of the star’s circle are
equally luminous, then we just need to know what fraction of the
star’s circle is covered by the exoplanet’s circle. We will use A• as the
exoplanet’s circular (or cross-sectional) area, A☼ as the star’s circular
area, r• as the radius of the exoplanet, and r☼ as the radius of the
star. By remembering the formula for the area of a circle (A = πr2),
we can see that the fraction of the light that is blocked can be
determined by taking the ratio of the squares of the radii.

A•

A☼
=

r2•
r2☼

For an earth-sized exoplanet around a sun-sized star, r• ≈ 6× 103 km
and r☼ ≈ 7× 105 km. With those specific numbers we find:

A•

A☼
=

(6× 103)
2

(7× 105)2
=

36× 106

49× 1010
≈ 1× 10−4 =

1

10, 000

Thus, we estimate that to detect an earth-sized exoplanet around a
sun-sized star, our instruments need to be accurate enough to detect a
1 out of 10,000 change in brightness. Fortunately, telescopes like
Kepler are capable of such feats.
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Chance to See Transit

Now for something a bit more challenging. Let’s imagine an exoplanet
orbits a star, but the plane of the orbit is randomly chosen. What is
the probability, P , that the exoplanet will orbit in such a way as to
periodically dim the star (from our point of view)?
We will assume circular orbits. It is easier to picture all the possible
planes of orbit by focusing on the possible axes of rotation (the thick
bars are the axes).

Picking a random plane corresponds to picking a random axis. Of the
three images shown above, only the middle one shows an orbit that will
be detectable via transit photometry. If we picture rotating the axis
around in every possible orientation, we realize only a small fraction
will put the orbit in front of the star. In fact, each of the compatible
orbits has an axis extending through a circular strip (zone). Below, the
black cylinders represent compatible orbits while the white cylinders
represent incompatible orbits.

So, our problem is equivalent to finding the fraction of the sphere’s area
covered by the strip. Because we are now considering surface areas, and
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not cross-sectional areas, we will use new symbols. The surface area of
the star is S☼ and the surface area of the strip is S||.

P =
S||

S☼

But we first need to determine how wide the strip is. The strip’s width
depends on how far an orbit can tilt while remaining between the viewer
and the star. We will call an orbit that is tilted as much as possible
while still being detectable a critically tilted orbit. The width of the
strip, x, depends on the radius of the orbit, r}, and the radius of the
star, r☼. If we imagine everything (star, viewer, and critically tilted
orbits) from the side (rotated a full 90° with axes in the plane of the
paper), we see two similar triangles (checkered and polkadotted).

Notice the critically tilted orbit raises the exoplanet to the star’s ra-
dius above the line connecting the center of the star and the viewer.
Corresponding pairs of sides of similar triangles have equivalent ratios
of lengths, so:

x =
2r2☼
r}

We are one fun fact away from the answer. If you had a perfectly
spherical potato and sliced it into equally thick slabs, every slab would
have the same amount of skin. This means that every time we add
some amount to x, S|| grows by a consistent amount, regardless of how
big x already is. Proving this fun fact is a bit tedious (see the following
section), but if we just accept the fun fact about spheres, the area of
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the strip, S||, is therefore the surface area of the star multiplied by the
ratio of x to the diameter.

S|| = S☼
x

2r☼

And so, by combining and rearranging the previous three equations,

P =
r☼
r}

For an earth-like orbit around a sun-like star, r} = 1.5 × 108 km and
r☼ = 7× 105 km. Thus, the chance that a planet in an earth-like orbit
would dim a sun-like star from our point of view is:

P =
7× 105

1.5× 108
≈ 5× 10−3

or, about half a percent chance. Luckily there are lots of stars! This
means that even though we haven’t detected a planet around a given
star, a planet could very well be there.

Proof of Potato Principle

If we already knew the general equation for the differential area of a
surface of revolution, this would actually be quite easy. If you know it,
you can skip to the last couple lines.
If we slice a spherical potato into very thin sections (like for making
potato chips), the shape of each slice could be estimated very closely
as a section of a cone. The differential element is therefore a section
(frustum) of a cone. Cones are a bit straighter than spheres, so dealing
with them is a bit easier.
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We want an equation for the lateral surface area of a cone (total surface
minus circular surface). The lateral surface could be cut along a lateral
edge, `, and flattened into a circular sector with radius ` and an arc
length equivalent to the basal circle’s circumference, 2πb.

So, the area of that circular sector, SL (which is equivalent to the lateral
area of the cone), can be determined as a fraction of a whole circle.

SL = π`2

(
2πb

2π`

)
SL = π`b

Now, if we want the frustum’s lateral area, SF, we take a difference
between two overlapping cones’ lateral areas.

SF = πb2 (`1 +∆`)− πb1`1
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Similar triangles tell us the following.

`1 +∆`

b2
=

`1

b1

Rearrange.

`1 =
b1∆`

b2 − b1

Substitute into equation for SF.

SF = πb2

(
b1∆`

b2 − b1
+∆`

)
− πb1

(
b1∆`

b2 − b1

)

= π

(
b1b2

b2 − b1
+

b22 − b1b2

b2 − b1
−

b21
b2 − b1

)
∆`

= π

(
b22 − b21
b2 − b1

)
∆`

= π

(
(b2 − b1) (b2 + b1)

b2 − b1

)
∆`

= π (b2 + b1)∆`

Use Pythagorean principle.

SF = π (b2 + b1)

√
∆h2 + (b2 − b1)

2

SF = π (b2 + b1)

√√√√1 +

(
b2 − b1

∆h

)2

∆h

If ∆h becomes very small (∆h → dh), and b2 = b1 + db,
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dS = 2πb

√√√√1 +

(
db

dh

)2

dh

This is the general equation for the differential area of a surface of
revolution. This is usually just memorized, so you could have basically
started from here.

Now we return to our sphere. We can relate how far up the section is
to how wide the frustum is.

b =
√

r2 − y2

db
dh

=
− y√
r2 − y2

dh = dy

dS = 2π
√

r2 − y2

√
1 +

y2

r2 − y2
dy

dS = 2π
√

r2 − y2 + y2 dy

dS = 2πr dy

Thus, our differential surface area is independent of y, the position of
the slice. This means that each tiny slice (of equal thickness) of the
spherical potato has the same amount of skin. This can be extended
to larger slices quite easily because 100 tiny slices from anywhere on
the sphere will have the same amount of skin as 100 other tiny slices.
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